Quasi-maximum Likelihood Estimation and Inference in Dynamic Models with Time-varying Covariances

نویسندگان

  • Tim BOLLERSLEV
  • Jeffrey M. WOOLDRIDGE
چکیده

We study the properties of the quasi-maximum likelihood estimator (QMLE) and related test statistics in dynamic models that jointly parameterize conditional means and conditional covariances, when a normal log-likelihood is maximized but the assumption of normality is violated. Because the score of the normal log-likelihood has the martingale difference property when the first two conditional moments are correctly specified, the QMLE is generally consistent and has a limiting normal distribution. We provide easily computable formulas for asymptotic standard errors that are valid under nonnormality. Further, we show how robust LM tests for the adequacy of the jointly parameterized mean and variance can be computed from simple auxiliary regressions. An appealing feature of these robust inference procedures is that only first derivatives of the conditional mean and variance functions are needed. A Monte Carlo study indicates that the asymptotic results carry over to finite samples. Estimation of several AR and AR-GARCH time series models reveals that in most situations the robust test statistics compare favorably to the two standard (nonrobust) formulations of the Wald and LM tests. Also, for the GARCH models and the sample sizes analyzed here, the bias in the QMLE appears to be relatively small. An empirical application to stock return volatility illustrates the potential importance of computing robust statistics in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi -maximum Likelihood Estimation of Dynamic Models with Time Varying Covariances

This paper studies the properties of the quasi -maximum likelihood estimator (QMLE) and related test statistics in dynamic models that jointly parameterize conditional means and conditional covariances when a normal log likelihood is maximized but the assumption of normality is violated. Because the score of the normal log likelihood has the martingale difference property under fairly general r...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Identification and frequency domain quasi-maximum likelihood estimation of linearized dynamic stochastic general equilibrium models

This paper considers issues related to identification, inference, and computation in linearized dynamic stochastic general equilibrium (DSGE) models. We first provide a necessary and sufficient condition for the local identification of the structural parameters based on the (first and) second order properties of the process. The condition allows for arbitrary relations between the number of obs...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Likelihood inference for exchangeable binary data with varying cluster sizes.

This article investigates maximum likelihood estimation with saturated and unsaturated models for correlated exchangeable binary data, when a sample of independent clusters of varying sizes is available. We discuss various parameterizations of these models, and propose using the EM algorithm to obtain maximum likelihood estimates. The methodology is illustrated by applications to a study of fam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005